
P
os
te
d
on

13
F
eb

20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
70
78
50
10
.0
80
81
15
9/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Post-Quantum Security for Trustworthy Artificial Intelligence: An

Emerging Frontier

Saleh Darzi1, Attila A Yavuz1, and Rouzbeh Behnia1

1University of South Florida

November 17, 2024

1



Post-Quantum Security for Trustworthy Artificial Intelligence:
An Emerging Frontier

Saleh Darzi
salehdarzi@usf.edu

University of South Florida
Tampa, Florida, USA

Attila A. Yavuz
attilaayavuz@usf.edu

University of South Florida
Tampa, Florida, USA

Rouzbeh Behnia
behnia@usf.edu

University of South Florida
Tampa, Florida, USA

ABSTRACT
Recent advancements in artificial intelligence (AI) have established
it as a vital tool across critical sectors such as healthcare, finance,
and defense. However, significant security and privacy challenges
persist. The emergence of quantum computers poses a substantial
threat to AI’s long-term security, and the widespread integration of
AI into real-world applications underscores the critical importance of
trustworthy AI. Our study delves into the intersection of AI with post-
quantum (PQ) security, focusing on how post-quantum cryptography
(PQC) serves the notion of trustworthy AI and bridges the long-term
security gap. We offer a comprehensive comparison of PQ-secure
solutions for trustworthy AI, present future perspectives and explore
potential synergies across approaches.

KEYWORDS
Post-Quantum Security, Trustworthy AI, Machine Learning, Post-
Quantum Cryptography, Privacy and Security

1 INTRODUCTION
Artificial Intelligence (AI) and Machine Learning (ML) are designed
to enable machines to learn, understand, and respond to datasets
without explicit programming, facilitating efficient task execution.
AI has consistently outperformed humans in various tasks, showcas-
ing its superior abilities and efficiency. This has resulted in extensive
integration of AI across various real-world applications, including
healthcare systems, financial services, and transportation. Addition-
ally, many cloud providers (e.g., AWS) offer their AI capabilities
to enable pay-per-use consumption of AI services in organizations,
leading to the emergence of the AI-as-a-Service (AIaaS) paradigm.
This, coupled with the pay-per-use nature of the cloud, has further
enhanced the adoption of AI among startups and small businesses,
as evidenced by tools like ChatGPT [16].

1.1 Trust at the Core: The Path to Trustworthy AI
The proliferation of AI systems and various security concerns dur-
ing their training and deployment phases underscores the critical
importance of trust and safety in these tools. The concept of "Trust-
worthy AI" aims to ensure that these systems are secure, reliable,
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and practical, fostering confidence in their use. Trustworthiness is
fundamentally linked to the confidentiality, integrity, and availabil-
ity of these systems [21]. Ensuring data and model confidentiality
is paramount in AI applications and services as privacy breaches
can lead to significant ramifications for organizations, including
loss of competitive advantage, erosion of customer trust, and non-
compliance with regulatory requirements (e.g., HIPAA [5]). Given
the high stakes, maintaining robust privacy measures has become
one of the most critical concerns for organizations leveraging AI
technologies. Privacy in AI encompasses two main aspects of these
systems aspects:
1) Training: Trustworthy training is essential to ensure model in-
tegrity, model privacy, prevent unauthorized access to users’ sensitive
data (e.g., medical records, financial information, proprietary data)
[25]. Model integrity ensures the robustness of these models and
prevents poisoning attempts. Model privacy in training protects the
intellectual property of AI models, preventing theft and reverse engi-
neering of model parameters [32].
2) Deployment: Trustworthy deployment mainly focuses on ad-
versarial attacks, model inversion attacks [33], and model privacy
attacks. Adversarial attacks aim to mislead the model through ma-
licious queries (e.g., misclassify images). Model inversion attacks,
extract sensitive information from a trained model (a more severe
case of membership inference attacks). Lastly, model privacy in
deployment defends against model extraction attacks, which aim to
replicate or steal the model by querying it with various inputs [12].

We note that these security notions are interconnected and a
breach in one can potentially undermine others. For instance, in-
adequate protection of training data in healthcare AI systems can
enable membership inference attacks, revealing whether specific
individuals’ data were included. This breach in data privacy directly
compromises model privacy by exposing structural vulnerabilities,
potentially leading to reverse engineering or other sophisticated
attacks on the model.

The integrity of the training data and the model is critical for
ensuring trust in AI systems. Ensuring data integrity during both
training and deployment phases protect against data poisoning at-
tacks [34], where malicious patterns are injected to cause incorrect
inferences and predictions. Maintaining model integrity during train-
ing prevents backdoor attacks while ensuring integrity in deployment
guards against adversarial attacks, where inputs are manipulated to
deceive the model into making incorrect predictions.

The rise of open-source tools increased computational power
and widespread availability of affordable computing devices has
increased both the frequency and impact of denial-of-service attacks
on AI models, particularly in deployment [11]. These attacks pose
significant availability risks, affecting the AI model and services,
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Figure 1: A high-level taxonomy of PQ-secure techniques for Trustworthy AI
especially in safety-critical applications, such as autonomous driving,
face recognition, and intrusion detection systems. Moreover, security
factors such as verifiability, fairness, and robustness are essential to
cultivate trust and promote the widespread application of AI services.

Existing research at the intersection of PQ computing and AI fo-
cuses on Quantum Machine Learning (QML) or using AI for network
intrusion detection systems (NIDSs) in the PQ era [24]. However,
QML—grounded in quantum channels and physics principles—fails
to address the transitional phase to the PQ era and remains imprac-
tical for real-world deployment [9]. In the broader context of AI
and cybersecurity, numerous surveys and research papers focus on
individual security criteria within AI systems. For instance, privacy-
preserving machine learning (PPML) is widely covered in privacy-
centered research [23], while architecture-centric approaches, such
as federated learning security requirements and taxonomies of se-
curity attacks on AI/ML, are also well-documented [28]. Although
these cryptographic and conventional security approaches offer valu-
able insights, they fall short in addressing long-term security and
trust at the foundational level, particularly for AI systems deployed
in high-stakes, real-world applications. Moreover, there is a lack
of comprehensive comparisons across these techniques, including
their limitations, progress, and overarching goals. Addressing these
gaps is essential for ensuring that AI systems can achieve robust,
future-proof security against emerging PQ threats.

1.2 Securing Long-Term Trust: PQC Serves AI
Beyond current security challenges, advancements in quantum com-
puting present a formidable threat to trustworthy AI. These machines
can undermine traditional security measures, compromising sensitive
data, jeopardizing privacy measures, and destabilizing AI security
frameworks. For instance, in AI-driven healthcare systems, quantum
computing can breach secure communication channels by breaking
encryption methods like ECC, jeopardize the privacy of patient’s
medical information, and compromise the integrity of diagnostic
results, ultimately eroding trust in AI-based medical applications

[20]. It is imperative to prioritize the transition to PQ solutions to
safeguard the long-term security of AI systems, as highlighted by
strategies from international institutions, agencies, and government
entities (e.g., the U.S. White House) [6]. PQC is among the pri-
mary solutions for addressing security and privacy threats in the
PQ era. Numerous academic and industry initiatives, competitions,
and projects are focused on developing and implementing general-
purpose PQC use cases, with NIST spearheading standardization
efforts, highlighting PQC’s critical importance for ensuring the long-
term security of real-world applications, including AI [10]. However,
several gaps, challenges, and unresolved questions remain, which
justify the need for this study, as outlined below:

• What drives the need for PQ-secure solutions in trustworthy AI?
The widespread integration of AI in data-sensitive applications such
as military, autonomous vehicles, healthcare, and model-sensitive do-
mains like financial services necessitates long-term security. Beyond
PQ robustness against attacks, PQ trust in supporting infrastruc-
tures is essential, particularly for AIaaS, distributed AI learning, and
cloud-based AI systems utilizing network communication channels
[26]. Consequently, there is an urgent need to shift to PQ-secure
solutions, giving rise to the concept of "PQ-Secure Trustworthy AI",
the focus of this study. This transition is vital to ensuring security in
the forthcoming PQ era.

• How does PQ secure techniques serve trustworthy AI? There
is no one-size-fits-all methodology for achieving a robust, trustwor-
thy AI system that addresses all security, varying privacy levels
(e.g., data, model), availability, integrity, and resistance to numerous
AI attacks. This study investigates the PQ-secure techniques that
serve trustworthy AI. We explore Trustworthy AI through algorith-
mic approaches like Homomorphic Encryption (HE), Functional
Encryption (FE), and Multi-Party Computation (MPC) with prov-
able security, statistical techniques such as Differential Privacy
(DP), and hardware-based solutions using Trusted Execution Envi-
ronments (TEE). A taxonomy of our study detailing PQC techniques
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and considerations for both the training and deployment phases of
Trustworthy AI is shown in Figure 1.

• How can we bridge the security gap in trustworthy AI for the
post-quantum era? To our knowledge, no study has specifically ad-
dressed Trustworthy AI with long-term security concerns associated
with post-quantum cryptography. AI and PQ security primarily op-
erated in isolation, focusing only on their integration. This article
identifies gaps and implementation challenges in existing PQ-secure
solutions that require further examination. It also provides forward-
looking PQ-secure visions and explores potential synergies between
various approaches as long-term security measures. Additionally, a
qualitative comparison of these methods is presented. The analysis
highlights several research gaps and potential solutions that warrant
attention and action from academia and industry to strengthen the
future of PQ-secure and Trustworthy AI systems.

2 KEY ELEMENTS OVERVIEW
Communication protocols (e.g., TLS), authentication mechanisms
(e.g., digital signatures), and encryption systems (e.g., ECC) used in
real-world applications are built on traditional cryptographic frame-
works. In public key settings, these frameworks rely on classical
hard problems like integer factorization (IF) and the discrete loga-
rithm problem (DLP), both of which are compromised by Shor’s
algorithm. Similarly, many symmetric key cryptographic primi-
tives are weakened by Grover’s algorithm. This has led to adopt-
ing quantum-resistant methods, including lattice-based, code-based,
isogeny-based, and multivariate cryptography, along with advanced
symmetric key primitives [10]. The techniques outlined below are
key approaches for achieving trustworthy AI in the PQ era. Their
descriptions and utility during the training and deployment phases
are detailed in Table 1.

• Homomorphic Encryption (HE): HE enables computations over
the encrypted data and is classified into three classes based on the
applied function: Partial HE (PHE), Somewhat HE (SHE), and Fully
HE (FHE). The first proposal of an FHE scheme [17] marked a pivotal
moment, shifting its theoretical consideration as a holy grail of
cryptography towards practical adoption in real-world applications.

• Functional Encryption (FE): Enables the holder of a specific key
(the functional encryption key) to compute a function on encrypted
data and retrieve the final output without learning the original plain-
text or the master secret key. FE is classified into Inner-Product FE
and Quadratic FE, based on the functionality performed [8].

• Multi-Party Computation (MPC): MPC allows multiple parties
to securely collaborate in computing a function over their private
inputs. This is particularly applicable in scenarios where a group of
entities lacks mutual trust or without a trusted third party [38].

• Differential Privacy (DP): The goal of DP is to prevent the
disclosure of the presence or absence of an individual data point,
with a privacy budget denoted by 𝜖. A smaller 𝜖 indicates stronger
anonymization, providing higher privacy protection [14].

• Trust Execution Environment (TEE): In a TEE, data and code
access are secured through hardware and software support. Various
TEE designs cater to different architectures, with Intel Software
Guard Extensions (SGX) and ARM Trust Zone (TZ) being the most
prevalent ones [18].

• Zero-Knowledge Proof (ZKP): At its core, it’s a cryptographic
two-party construction to safeguard the privacy of data as one party

proves a statement to another without disclosing any additional
information beyond the statement’s validity, hence the term "zero-
knowledge." The classification of ZKP depends on the communi-
cation and interaction between the involved parties, leading to two
main categories: interactive and non-interactive protocols [22].

3 PQ-SECURE AI TRAINING & DEPLOYMENT
This section provides a comprehensive analysis of potential PQ
security aspects in AI, covering both the training and deployment
phases, with the objective of establishing a trustworthy AI.

3.1 Algorithmic Approaches for AI Security
The main algorithmic strategies with provable security rely on en-
cryption techniques, primarily HE and FE. These methods ensure
continuous data encryption across all stages, including sharing, pro-
cessing, training, inference, post-AI output, and storage, securing
the data throughout its lifecycle in an AI system.

3.1.1 Homomorphic Encryption. HE, especially FHE, is widely
recognized as a cornerstone solution within Privacy-Enhancing Tech-
nologies (PETs). It plays a pivotal role in various AI scenarios by
enabling computations on encrypted data while ensuring the confi-
dentiality of both user data and the AI model throughout the entire
process, from data sharing to inference, without requiring decryption
at any stage [31].

Training Phase: A few research have explored training neu-
ral networks over encrypted data, avoiding reliance on unrealistic
assumptions such as the presence of honest parties [35]. Nonethe-
less, their substantial computational burdens and reduced accuracy
compared to training over the plaintext have led to a minimal em-
ployment of FHE in the training phase. Despite this, submitting
encrypted data for outsourced training is highly preferred by users
and greatly simplifies practical applications, such as securely up-
loading encrypted financial transactions for analysis or patient data
for diagnosis training. FHE also supports secure aggregation in col-
laborative and federated learning, allowing entities like hospitals
to train models on encrypted medical records without risking data
breaches. Additionally, HE protects data privacy and model privacy
by encrypting model parameters, which is particularly useful for
proprietary systems like recommendation algorithms.

Deployment Phase: Given the higher priority of data privacy out-
weighing model privacy, most state-of-the-art FHE-based solutions
primarily focus on the deployment phase. These schemes enable
cloud-based AI or AIaaS, to perform predictions on encrypted data
using pre-trained models. Moreover, HE is particularly suitable for
deploying models in untrusted environments, such as public clouds
or edge devices. Many of these schemes leverage HE to secure mod-
els during deployment on third-party platforms, as the homomorphic
property of HE ensures that data remains encrypted throughout all
stages of AI applications. This approach offers robust protection
against potential breaches, insider threats, and unauthorized access,
thereby providing strong security assurances.

Despite its promising security, most employed HE variants in AI
are rooted in classical cryptography and lack PQ security, particu-
larly those based on PHE and SHE schemes. However, most practical
variants of FHE schemes are built upon hard lattice problems (such as
the Learning With Errors problems) or rely on approximate problems
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Table 1: High-level overview of the PQ-secure solutions with their utility in AI
Approach Description Utility in Training Phase Utility in Deployment Phase

HE Enables computations over encrypted data potentially Data Privacy, Model Privacy Input Data Privacy, Model Privacy
yielding encrypted results as if computed on plaintext Confidentiality of AI Parameters Inference Over Encrypted Data

FE Allows decryption to reveal only a specific Data Privacy, Model Privacy Input Privacy, Model Privacy
function of the encrypted data Access Control Suitable For Private AIaaS

MPC
Enables secure distribution of function computation Data Privacy, Model Privacy Data Privacy Against Model Owner
on private inputs among distributed parties Collaborative Training Model Theft Resistance

Support Resource-Constraint Environment Distributed Private & Outsourced Inference

DP
A distortion mechanism that adds noise to minimize Individual Data Privacy Inference Attacks Resistance
the effect of any individual data point on the model Extraction Attacks Resistance Membership Attacks Resistance

Centralized & Distributed Compatibility Private Real-Time AI Services

TEE

Establishes a secure, isolated, and trusted Data Privacy, Model Privacy Confidentiality of AI Parameters
environment for data and computation Model Integrity Access Control, Private Inference

Confidential Code Execution Model Extraction Attacks Resistance

ZKP
Allows one party to prove the correctness of Computational Integrity Prediction Integrity
a statement to another party without disclosing Inference Correctness Inference Verifiability
any information beyond the statement’s validity Training Fairness & Model Integrity Fake Service Prevention

in high-dimensional lattices, thereby offering PQ security assurances.
Therefore, it is reasonable to infer that adopting an FHE-based ap-
proach in AI inherently ensures adherence to PQ security guarantees.
The practicality of the HE approach is significantly influenced by
the existing open-source libraries. Numerous libraries incorporate
state-of-the-art FHE schemes to expand their capabilities to support
optimization techniques. Advances in engineering aspects, including
batching techniques for handling multiple inputs in a single cipher-
text, support for parallelization, as well as hardware acceleration
through GPU and FPGA implementation, and algorithmic enhance-
ments for the training phase, contribute to increased efficiency and
improved performance of FHE. These developments make FHE a
viable solution for AI applications.

3.1.2 Functional Encryption (FE). FE constructions are in the
early stages of AI application, with the key distinction from HE being
that FE produces plaintext outputs of the performed function rather
than ciphertext. While both are applicable in privacy-preserving AI
for training and inference, FE is more suited for scenarios requiring
plaintext outputs, such as cloud-based AI and AIaaS. For instance,
in cloud-based healthcare, FE allows the cloud server to compute a
disease risk score based on encrypted patient data and return a plain-
text result (the score) to the clinician, protecting the underlying data.
FE restricts decryption to specific outputs, allowing only particular
functions to be computed without sharing a secret key, making it
ideal for selectively revealing data in sensitive environments [30].

While FE-based methods enable collaboration without fully dis-
closing raw data and offering access control along with privacy, they
require a trusted third party for key generation. This makes them
applicable only under an honest-but-curious security model, where
the server fulfills its duties but may attempt to glean information
about the secret communication, data, or model. However, FE carries
certain privacy risks. The plaintext output format can lead to infor-
mation leakage, making the system vulnerable to threats like model
inversion and inference attacks, even from an honest-but-curious
server. FE mainly derives its security directly from the difficulty
of the underlying problems in the employed lattice-based or multi-
variate cryptography. These PQ assurances entail efficiency sacri-
fices, including higher security parameters, slower operations, and
increased complexities, making them unfeasible for large datasets.

3.2 Distributed Trust: Collaborative Security in AI
This section explores architectural strategies for collaborative learn-
ing and distributed techniques, focusing on FL and secure MPC.
3.2.1 Federated Learning (FL). FL, introduced by Google
[27], is an architectural scalability solution that enables collabora-
tive learning by allowing participants to train models locally without
sharing raw data, thus enhancing privacy and security. FL aggregates
model updates centrally, creating a robust and resilient system that
also reduces data transfers, minimizing potential breaches during
training. For applications governed by regulations like HIPAA [5],
FL often serves as the only compliant approach. It requires no spe-
cific hardware or maintenance at the network edge while offering
fault tolerance, as the failure of one participant does not halt the
process. This approach is ideal for large-scale real-world scenarios.

Although FL is primarily an AI strategy rather than a crypto-
graphic solution, it plays a crucial role in the PQ era. FL is not fully
distributed and relies on centralized aggregation for global model
updates and refinements. However, local updates can reveal sensi-
tive user data, necessitating secure aggregation techniques based
on cryptography. FL’s PQ security can be achieved through the in-
tegration of PQC methods (e.g., FHE, MPC, TEE) for the secure
aggregation. Specifically, secure aggregation can be ensured using
advanced encryption techniques (e.g., HE, FE), where aggregation
occurs over encrypted data, using MPC to distribute the aggregation
securely among non-colluding parties, or through DP protection
by adding noise to local updates to safeguard user data and resist
leakage. Additionally, from a PQ perspective, secure aggregation
can be delegated to a quantum computer, providing not only PQ
security but also verifiability of computations, leveraging the unique
properties of quantum computing. However, this approach remains
impractical for widespread adoption in the transition to the PQ era.

3.2.2 Multi-Party Computation (MPC). MPC serves as a key
cryptographic backbone technique and a foundational support for
collaborative earning, enabling distributed trust while facilitating the
transformation from centralized frameworks into distributed ones.
The novelty of MPC lies in its capability to enable users to compute
functions on their data privately, sharing only the final results while
offloading much of the computational burden. Users collaboratively
compute the final model without accessing individual gradients, en-
suring data privacy. However, this comes at the expense of increased
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communication overhead among the involved parties. Primarily, a
secure MPC is implemented through cryptographic techniques, en-
compassing, among others, HE, Garbled Circuit (GC), Oblivious
Transfer (OT), and Secret Sharing (SS). HE enables operations to
be performed on encrypted data without decryption. GC encrypts
the boolean circuit version of the function to be computed, allowing
for the secure evaluation of the function with no disclosure of inter-
mediate and input data in a fixed number of communication rounds.
OT allows for the exchange of private data in a privacy-preserving
manner. SS enables data to be shared in a way that only a threshold
combination of shares can recover the data, ensuring secure sharing.

Training Phase: Training generally takes two forms: local train-
ing over distributed datasets or secure collaborative training over
centralized datasets. MPC facilitates secure aggregation in scenarios
where multiple institutions collaboratively train on datasets with-
out exposing raw data. In this approach, only model updates are
shared while all other data remains private, making it particularly
well-suited for cross-silo applications. By training data locally and
exchanging only updates, the risk of data breaches is significantly
minimized. Also, MPC enables secure outsourcing of user updates
and training in untrusted environments or with private data sources.

Deployment Phase: Most MPC-based methods work alongside
encryption mechanisms, particularly using HE schemes. In the de-
ployment phase, MPC ensures privacy by securely distributing both
the inference process and query data, safeguarding user privacy
from the model owners, and enabling privacy-preserving inference.
Specifically, by allowing multiple entities to participate in the infer-
ence phase without relying on a trusted third party, MPC enables
secure inference and facilitates regulatory compliance. MPC ensures
user data privacy during querying by enabling collaborative tasks
without exposing sensitive information. For instance, in fraud detec-
tion across banks, transaction details remain private while detecting
anomalies collaboratively. Similarly, in healthcare, MPC allows the
joint analysis of patient data while complying with regulations like
HIPAA [5]. Furthermore, MPC supports outsourcing inference to
untrusted servers, enabling organizations to use shared models for
predictions while keeping their input data secure, making it ideal for
PET across sectors such as insurance and supply chain management.

There are various PQ-secure MPC schemes designed for two-
party, three-party, and four-party AI scenarios. Typically, as the
number of parties involved increases, the performance enhancement
(e.g., communication overhead) is more pronounced. Indeed, MPC
can be implemented using PQ-secure cryptographic primitives, such
as NIST-standardized PQC or symmetric encryption schemes (e.g.,
AES, hash functions). Utilizing PQC-secure encryption during data
preparation, employing a secret sharing mechanism for data split-
ting, and incorporating PQ-secure HE for aggregation/evaluation can
provide PQ security assurance. Also, MPC-based constructions that
employ PQ-secure schemes under TEEs for function evaluation are
resistant to PQ attacks, enhancing the overall security of the process.

3.3 Statistical Approaches for Privacy-Centric AI
DP is a statistical perturbation technique that, while not inherently
based on PQ-secure cryptographic problems, is not vulnerable to
quantum attacks, unlike approaches dependent on cryptographic hard
problems. However, to achieve PQ guarantees in AI applications,
DP could be combined with PQ-secure cryptographic protocols. As

DP primarily focuses on individual data privacy, it serves as a com-
plementary solution commonly employed in conjunction with other
privacy-enhancing techniques (e.g., HE, FE, and MPC) to address
broader privacy needs (e.g., system-level privacy) and reinforce PQ
promises [15]. After extensive research spanning over a decade,
DP has emerged as the de facto standard for privacy protection in
PETs. Technically, DP is a randomizing algorithm that incorporates
calibrated statistical noise addition or carefully adjusted dataset
swapping to ensure that distinguishing between two nearly identical
datasets is no more effective than a coin toss. In an AI setting, DP
ensures the output of the optimization algorithm is distorted with
noise to ensure that no one data point has affected the output of the
algorithm.

Training Phase: During the training phase, DP methods vary
based on architecture and learning setting. In a centralized setting,
random noise is added to the objective function to mask sensitive
data and obscure the influence of any single data point, protecting
model outputs from privacy leaks. However, this approach depends
on an honest-but-curious assumption and trust in the model ad-
ministrator, potentially conflicting with strict privacy policies. In
decentralized AI, local DP allows users to add noise directly to their
data to protect it from the model owner, while central DP applies
carefully calibrated noise to aggregated outputs, concealing indi-
vidual user activity during training. Instance-level DP introduces
randomization to local labels, protecting against the disclosure of
specific label information in the final model.

Deployment Phase: In the deployment phase, regardless of whether
the setting is centralized or distributed, DP provides data-level pri-
vacy guarantees that protect sensitive inference results in real-time
systems, such as recommendation and fraud detection systems, while
securing user queries in online environments to prevent adversaries
from inferring input data from outputs. Consequently, DP is often the
preferred choice for large companies seeking to manage user data in
a privacy-preserving manner, facilitating noisy predictions, private
inference, and resistance to inference attacks during deployment.

A PQ aspect of DP involves adding quantum noise, leading to
Quantum-DP. QDP leverages quantum processing to enhance model
and user data privacy against post-processing attacks [36]. Although
practical implementation faces challenges, QDP offers a promising
approach, especially with delegated quantum computation, where
computations are outsourced to a central quantum server. This ap-
proach could support verifiable outputs and client-side privacy even
with Noisy Intermediate-Scale Quantum (NISQ) devices, potentially
advancing PQ solutions before full-scale quantum capabilities are
available [37]. Beyond safeguarding privacy, DP offers diverse utili-
ties in AI applications. These include preventing over-fitting through
DP-assisted data testing, ensuring model fairness by employing DP
in data resampling, and addressing stability issues.

3.4 Hardware-Based Security for AI
In untrusted environments, whether centralized or distributed, TEE
protects AI data, software, and operations by creating an isolated, se-
cure environment with dedicated memory registers. In essence, TEE
is a hardware-assisted approach that promises the notion of "Confi-
dential Computation". While the use of TEE for privacy-preserving
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AI is a relatively new approach, it provides stronger security assump-
tions than traditional cryptographic methods and reduces computa-
tional overhead compared to methods based on complex computa-
tional problems, such as HE, FE, and MPC [13].

Training Phase: By isolating processed data and the computed
model within the TEE and restricting access solely to authorized
entities during the training phase, this approach ensures both data
and model privacy and prevents parameter leakage. It ensures that
neither the model owner nor the data owner can access each other’s
sensitive information, thereby protecting intellectual property, pro-
prietary AI algorithms, and models through confidential computa-
tion. For instance, pharmaceutical companies collaborating on drug
discovery can use TEEs to jointly train AI models on sensitive re-
search data without exposing proprietary compounds or algorithms
to competitors. Similarly, in the automotive industry, manufacturers
can collaborate on autonomous driving algorithms while keeping
proprietary data and model parameters secure.

Deployment Phase: The utilization of TEE in the deployment
stage enables a party to receive inference results in a privacy-preserving
manner while protecting model parameters and preventing model
theft. For example, running medical diagnoses in hospitals, fraud
detection systems in financial institutions, and autonomous vehicle
navigation systems can all be performed under TEE to safeguard
sensitive data while ensuring resistance to unauthorized access.

The PQ security of TEE-based approaches does not originate
from the TEE design itself; instead, it relies on utilizing a PQ-
secure scheme under the TEE. Technically, by employing NIST
PQC-standardized schemes for AI training and inference, ensuring
that computations are not secure by design but by protocol, we can
achieve PQ promises in PPML.

3.5 A Verifiable Approach towards AI Integrity
The presence of malicious parties in outsourced AI computations or
collaborative training that involves user-assisted training or model
aggregation introduces potential vulnerabilities and risks. Specif-
ically, the model owner might engage in dubious activities when
applying the AI model, users could act maliciously or misbehave to
gain an advantage in the inference phase by poisoning input data, or
they might input incorrect data to lower their computational costs,
especially if they have limited resources. Also, in real-world AI
applications involving sensitive information, such as in financial ser-
vices (e.g., fraud detection, money laundering monitoring, trading),
healthcare systems (e.g., AI diagnosis, medical insurance policies),
etc., it is crucial for the model owner to correctly apply the training
model to users’ data. Scenarios like collaborative model training
between institutions, ensuring reliable model outputs in healthcare or
insurance, regulatory compliance, and outsourced AI computations
all demand the assurance of model correctness. In such cases, com-
putational integrity becomes essential alongside privacy protection.
Thus, verifiability not only ensures accuracy but also prevents the
dissemination of fake services by the model owner [29].

ZKP emerges as the ideal solution for these scenarios, funda-
mentally offering trust in the system, providing technical fairness,
legitimizing computation correctness, proving the accuracy of model
output, and ensuring training correctness in a privacy-preserving
manner. Thereby, ZKP could be viewed as a complementary tool to
other privacy-enhancing techniques for AI. Note that, despite the

need for verifiable AI, the verification algorithm should not disclose
users’ privacy and resist common threats like member inference and
reconstruction attacks. While the majority of efficient ZKP systems
are built on elliptic curve cryptography (ECC) and offer short proofs
with fast verification, there are also practically efficient ZKP schemes
constructed on symmetric ciphers, lattice-based, code-based, and
multivariate cryptography, providing PQ promises suitable for AI ap-
plications. Despite their PQ promises, these schemes face challenges,
including high computational complexity, large proof sizes requiring
increased storage and transmission bandwidth, and interoperability
issues that limit their integration in diverse environments, such as
large-scale networks and resource-constrained settings, due to added
latency and computational demands.

4 LIMITATIONS, CHALLENGES, & VISIONS
Since there is no holistic solution that currently addresses all se-
curity and privacy aspects of AI, this section presents a qualitative
comparison of the discussed approaches. It highlights their strengths,
limitations, practical utility, potential synergies, and future prospects.
Table 2 summarizes progress in terms of standardization efforts,
security guarantees, and suitability for various use cases. Table 3
highlights their limitations and challenges based on criteria such
as security weaknesses, performance impact, implementation chal-
lenges, and scalability, as well as architectural support for central-
ized, distributed, and resource-constrained environments.

▷ Homomorphic Encryption: The primary drawbacks of HE lie
in their substantial computational overhead for large models and
low-performance efficiency (e.g., model accuracy), largely attributed
to the lattice-based constructions employed. Also, challenges such as
large key and ciphertext sizes, the necessity for noise management,
and limited functionality, particularly for complex neural networks
over encrypted data, may constrain the utility of HE in AI appli-
cations. Despite efforts to develop practical FHE-based designs, it
is crucial to emphasize that, in comparison to tasks like inference,
prediction, and classification over unencrypted data, there remains a
considerable journey ahead to enhance output accuracy, reduce com-
putational overheads for massive datasets, and alleviate performance
burdens for real-world applications.

Beyond the challenges outlined in the tables, potential synergies
warrant further investigation. Many HE schemes assume the encryp-
tion of all data under one key. A novel extension involves expanding
the number of keys that can be supported on homomorphically eval-
uated ciphertexts. While this extension poses challenges for efficient
design, it is particularly suitable for AI with collaborative system
models. This is also relevant in scenarios involving distributed com-
putation, where data owners may lack trust or are unwilling to share
a key. Another potentially valuable feature for privacy-centric sce-
narios is distributed decryption, enabling the combination of parties’
secret keys to collectively decrypt the final ciphertext.

Incorporating attribute- or identity-based encryption properties
into HE can make it more suitable for AI applications (e.g., health-
care, financial fraud detection). This enhancement preserves privacy
while enabling selective access control, allowing only individuals
with specific attributes or identities to access the encrypted data.
Moreover, threshold-HE enables the creation of a collective pub-
lic key, allowing a group of users to participate in the evaluation
process. Only a specific combination of these users can perform
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Table 2: Qualitative Comparison of PQ-Secure Solutions for Trustworthy AI
Approach Standardization Efforts Security Guarantees Use Case Suitability

HE Ongoing Standardization Consortium By NIST, ISO, & IEC [2] Computational Security Privacy-Enhancing Technologies
Offers Encryption At All Times e.g., Healthcare, Finance, Military

FE No Formal Standardization Efforts; Still in Early Stages [30] Computational Security Specific Analysis on Private Data
Controlled Access Environments e.g., Diagnosis in Healthcare Systems

MPC Strong Standardization Efforts By ISO & NIST [1] Computational Security Collaboration Without Data Sharing
Secure Collaborative Computation e.g., Joint Financial Analysis, Advertising

DP Notable Standardization Efforts By NIST & OpenDP Initiatives [3] Statistical Security Data Analytics Applications
Data-Level Privacy e.g., Social Science, healthcare systems

TEE Well-Defined Standards; GlobalPlatform & Proprietary [4] Hardware Security Sensitive & Secure Computations
Resistance Against External Interference e.g., Cloud Computing, Smart Contracts

ZKP ZKProof Standards; Open-Industry Academic Initiative [7] Computational Security Verifiable Computations
Data- & System-Level Integrity e.g., Blockchains, Financial Proofs

Table 3: Limitations and Challenges of PQ-Secure Solutions for Trustworthy AI
Approach Security Weaknesses Performance Impact Implementation & Scalability Challenges Architectural Support

HE
Vulnerable to Fault-Injection Attacks Significant Computational Costs Requires Specialized Software Libraries Great for Centralized Setting
and Fault-Injection Attacks High Memory Overhead Requires Hardware Acceleration Unsuitable for Distributed Setting

Slow for Complex Operations Impractical for Large-Scale Networks Infeasible for IoT Devices

FE
Susceptible to Adaptive Attacks Less Efficient than Standard Encryption Lack of Practical Libraries Requires Centralized Infrastructural Support
Data Disclosure in Some Functions High Latency for Complex Scenarios Limited Supporting Cryptographic Tools Limited Applicability to Distributed Setting

Only Applicable in Small Networks Not Suitable for IoT Environments

MPC
Vulnerable to Collusion Attacks High Communication Overhead Requires Secure Communication Channels Not Typically Used for Centralized Setting
and Man-In-The-Middle Attacks Introduces High Latency Needs Domain-Specific Knowledge Great for Distributed Settings

High Bandwidth Requirements Not Scalable for Large Number of Participants Applicable for IoT Environments

DP
Vulnerable to Privacy Leakage Reduced Inference Accuracy Setting the Privacy Budget Suitable for Centralized Setting
and various Inference Attacks Lowered Data Utility Few Automated Tools Efficient for Distributed Frameworks

Highly Scalable But Bad with Large Datasets Suitable for IoT Environment

TEE
Vulnerable to Side-Channel Attacks Costly Context Switching Requires Specific Hardware Support Well-Suited for Centralized Setting
Susceptible to Physical Tampering Increased Latency Hardware Bugs and Compatibility Issues Applicable for Distributed Setting

Requires Device Compatibility for Scalability Limited by Hardware Availability for IoT

ZKP
Vulnerable to Malicious Setup Attacks Computationally Expensive Requires Specialized Libraries Useful for Centralized Verification
and Risk of Inference Attacks Large Proof Sizes Needs Advanced Cryptographic Tools Applicable to Distributed Setting

Limited Scalability for Computational Costs Too Expensive for IoT Environments

decryption. This property is well-suited for privacy in collaborative
learning, encompassing both honest-majority and dishonest-majority
scenarios.

▷ Functional Encryption: For future work, given that FE often
contrasts with FHE, numerous challenges and opportunities demand
further attention and resolution:
Besides lowered model performance in both phases, currently, FE
schemes focus mainly on AI inference, leaving a gap in leveraging
FE techniques for training over encrypted data. FE operates at lower
levels than HE, incurring higher computational costs and exhibiting
limited functionality, especially for intricate AI algorithms such as
convolutional neural networks. In terms of implementation and its
impact on performance, while HE benefits from various libraries
across different programming languages and platforms, there are
only a few libraries dedicated to implementing state-of-the-art FE
schemes. From an engineering perspective, FE lacks attention, evi-
dent in the scarcity of hardware acceleration, GPU or FPGA utiliza-
tion, and optimization methods for faster computational performance.
Notably, to our knowledge, all FE-based PPML implementations are
currently on CPU, prompting the need for research on GPU support
for FE schemes that would significantly contribute to enhancing the
applicability of FE methods in real-world scenarios.

▷ Multi-Party Computation: The practical limitation of rely-
ing solely on MPC for the privacy of AI lies in scalability issues
and substantial communication load, particularly in large-scale AI
applications or training with massive databases. The performance
challenges worsen with the need for PQ security. Additionally, the
distributed function must be known, public, or shared, which may not
be feasible in certain AI scenarios. The potential for collusion among
participants and the requirement for participants to be online with

adequate bandwidth during function evaluation pose limitations on
MPC approaches, particularly with resource-constrained devices. An
alternative approach for such scenarios involves using online-offline
methods, allowing for pre-computation and swift online interaction.

Given the computational power, communication bandwidth, and
application choice, one may opt for FHE for low communication
but high computation or MPC for high communication with lower
computation. Despite the longstanding competition between FHE
and MPC as privacy solutions in various PETs, an optimal approach
for privacy-preserving AI combines MPC and HE synergistically.
This combination not only elevates privacy for both model and data
owners but has also demonstrated significantly enhanced perfor-
mance compared to using these techniques independently. However,
it’s worth noting that certain HE-enabled MPC techniques may lack
resistance against model extraction attacks. One potential remedy
is the integration of DP on top of MPC. Finally, an advanced ap-
proach under exploration is multi-party quantum computation, a
novel concept that requires further investigation.

▷ Differential Privacy: Although DP is a widely applicable
approach in AI across various contexts, including centralized, col-
laborative, and resource-constrained environments, it is not an all-
encompassing solution. The intrinsic trade-off of privacy in DP
lies in the compromise of the model’s accuracy as the performance
penalty. Despite safeguarding individual identities through the cen-
sorship of personal data and smoothing the impact of user contribu-
tions throughout both the inference and training phases, DP dimin-
ishes the quality of the trained model, its parameters, or the output
results. It functions effectively alongside nearly all other PQ-secure
techniques. Consequently, PQ-DP warrants further investigation,
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particularly regarding the use of quantum-resistant pseudorandom
number generators (QR-PRNGs) to generate calibrated noise.

▷ Trust Execution Environment: Technically, training larger
models using TEE remains challenging, as demonstrated by the lim-
ited research in this area. While existing studies show promising
results, scaling TEEs for real-world applications remains a significant
hurdle. TEE also faces challenges such as hardware expenses and
susceptibility to side-channel attacks, including execution time and
power analysis [19]. These attacks could undermine the confidential-
ity of enclaves, posing a threat to the system by potentially leaking
information and disclosing privacy. Additionally, in the context of
AI with massive data or complex models, the necessity for partition-
ing and batch processing is essential, rendering TEE inapplicable
in some scenarios. Furthermore, the use of TEE is not optimal for
performance, where the overhead associated with mode transitions,
shifting between untrusted and trusted states, can become expensive
and impact the overall system performance. Additionally, the design
of GPU support and acceleration techniques could prove beneficial
for AI applications in the TEE context. Thus, there is a need for
further studies and attention, particularly in the engineering aspect.

▷ Zero-Knowledge Proof: PQ-secure ZKP, while not directly
applicable in all processes of AI, offers distinct advantages. An ev-
ident area for potential future work involves integrating verifiable
AI into existing privacy frameworks, especially for those with PQ
assurances. For example, in combination with encryption-based ap-
proaches, verifiability can validate that encrypted data is correct and
falls within a specific range. Currently, they remain impractical for
complex AI algorithms, can be extremely expensive for proof gener-
ation in many AI scenarios with extensive tasks, and are limited in
addressing specific aspects of privacy in AI. ZKP can be viewed as
an equivalent approach to those based on TEE. While TEE relies on
hardware assistance, ZKP provides cryptographic proof for secure
computations. Despite differences in their fundamental assumptions
and security assurances, ZKP incurs lower implementation costs.
Also, PQ-secure ZKP-based schemes are mostly non-interactive, in
contrast to MPC-based ones that assume synchronous communi-
cation without support for dynamic parties. This results in a more
realistic system model and lower overhead.
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