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Abstract

The rapid integration of Artificial Intelligence (Al) across sectors such as healthcare and finance has
amplified concerns around privacy, integrity, and long-term security, particularly in outsourced Al-as-a-
Service (AlaaS) environments. As quantum computing threatens classical cryptographic protections,
ensuring Post-Quantum (PQ)-Secure Trustworthy Al has become imperative. This study explores a holistic
framework for securing Al systems across training and deployment phases by leveraging PQ-resilient
cryptographic and privacy-enhancing technologies (PETs), including Homomorphic Encryption (HE),
Functional Encryption (FE), Multi-Party Computation (MPC), Differential Privacy (DP), Trusted
Execution Environments (TEEs), and Zero-Knowledge Proofs (ZKPs). Each technique offers
complementary strengths, ranging from secure computation and privacy-preserving inference to verifiable
model integrity, yet varies in practicality, scalability, and PQ-readiness. We evaluate their utility,
integration challenges, and trade-offs, advocating for hybrid designs (e.g., FL+MPC, HE+FL) to optimize
security and performance. The study concludes that building PQ-secure, privacy-centric Al requires
strategic selection and deployment of tailored tools across the Al pipeline to balance robustness with real-
world feasibility.
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Introduction

Artificial Intelligence (Al) and Machine Learning (ML) enable machines to perform tasks autonomously,
often surpassing human efficiency. This capability has driven their adoption across critical sectors such as
healthcare, finance, and transportation. With the rise of Al-as-a-Service (AlaaS) platforms like AWS and
tools like ChatGPT, Al has become widely accessible, particularly for startups and small enterprises.
However, the rapid deployment of Al also introduces serious concerns around privacy, integrity, and long-
term security. These risks underscore the need for Trustworthy AI, systems that remain secure, reliable,
and verifiable even in adversarial settings [1]. This is particularly vital in high-stakes domains like
healthcare, where Al applications like Radiomics support tasks like tumor detection from medical imaging.
In such contexts, breaches in data confidentiality or inference integrity can be life-threatening. Moreover,
outsourcing Al services to third-party clouds exposes training datasets and models to additional
vulnerabilities, necessitating the adoption of Privacy-Enhancing Technologies (PETs) throughout the Al
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lifecycle. Trustworthy Al hinges on two pillars: (1) Training Security, which ensures model integrity,
protects user data (e.g., medical records, financial data), and defends against model theft or poisoning; and
(2) Deployment Security, which safeguards against adversarial queries, model inversion, and extraction
attacks that can leak or replicate sensitive models [4,7].

Post-Quantum Security for Trustworthy Al

The advent of quantum computing threatens to break classical cryptographic schemes, endangering the
long-term confidentiality and robustness of Al systems [2]. For instance, ECC-based encryption used in
Al-driven healthcare can be broken, risking patient privacy and diagnostic reliability. To mitigate these
threats, a global transition to post-quantum (PQ) cryptographic solutions is underway, led by efforts such
as the NIST standardization initiative [5]. However, integrating PQ security into Al remains an open
challenge, which this study aims to address.

We focus on the concept of PQ-Secure Trustworthy Al, a framework for securing Al across cloud,
distributed, and AlaaS settings where long-term integrity and confidentiality are paramount. Our study
investigates PQ-secure techniques spanning algorithmic, statistical, and hardware-based domains,
analyzing their applicability to both Al training and deployment. We identify critical gaps in current
practices, examine integration and performance trade-offs, and outline directions for advancing PQ-resilient
Al infrastructures. A qualitative comparison of these methods is also provided to guide future research and
development toward scalable, secure, and verifiable Al systems.
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Figure 1. A high-level taxonomy of PQ-secure techniques for Trustworthy Al



PQ-Secure Al Training & Deployment

Algorithmic Approaches for Al Security: One set of approaches to secure Al relies on encryption-based
techniques with provable security, notably Homomorphic Encryption (HE) and Functional Encryption
(FE). Homomorphic Encryption, and specifically Fully Homomorphic Encryption (FHE), enables
computations on encrypted data without the need for decryption, ensuring end-to-end confidentiality of
both user data and models. While FHE-based training remains computationally intensive and less accurate,
it is widely used for privacy-preserving outsourcing and secure aggregation, especially in federated learning
scenarios. FHE is most beneficial during the deployment phase, particularly for AlaaS and cloud
environments, offering robust protection in untrusted settings [10]. Most practical FHE schemes are built
on lattice-based problems, which provide PQ security. Continuous improvements, such as batching,
parallelization, and hardware acceleration, are enhancing FHE's practicality. In addition to HE, FE [6]
allows for the decryption of specific function outputs, enabling selective data disclosure in settings such as
cloud-based healthcare. While FE ensures privacy through access control, it operates under an honest-but-
curious model and may risk leakage of information through plaintext outputs. Additionally, FE schemes
face PQ-related efficiency trade-offs, limiting their scalability for large datasets.

Distributed Trust: Collaborative Security in Al: Distributed trust in Al security is achieved through
collaborative architectures like Federated Learning (FL) and cryptographic techniques such as Multi-Party
Computation (MPC) [11]. FL enables decentralized model training by allowing participants to retain their
raw data locally, enhancing privacy, fault tolerance, and regulatory compliance (e.g., HIPAA). While FL
relies on centralized aggregation, PQ security can be achieved by integrating secure aggregation methods
such as HE, MPC, TEE, or DP. MPC complements FL by enabling multiple parties to jointly compute
functions over their private data without revealing it, using primitives like HE, garbled circuits, oblivious
transfer, and secret sharing. During training, MPC supports secure aggregation across institutions and
outsourcing in untrusted environments. In deployment, MPC enables privacy-preserving inference without
trusted intermediaries, safeguarding sensitive queries across sectors like banking and healthcare. PQ-secure
MPC schemes, particularly those utilizing NIST-standardized primitives and TEE-based secure function
evaluations, provide scalable and resilient security frameworks suitable for collaborative Al in the PQ era.

Statistical Approaches for Privacy-Centric Al: Differential Privacy (DP) is a statistical technique that
protects individual data privacy by introducing calibrated noise, making it difficult to distinguish between
similar datasets. Though not based on cryptographic hardness assumptions, DP is inherently resistant to
quantum attacks and is often combined with PQ-secure methods like HE, FE, and MPC to enhance system-
level privacy. In Al training, DP is applied either centrally, by adding noise to objective functions or
aggregated updates, or locally, where users inject noise directly into their data or labels to prevent leakage
[9]. During deployment, DP secures inference results and user queries in real-time systems (e.g.,
recommendation engines, fraud detection), making it a practical solution for companies aiming to protect
user data and resist inference attacks. An emerging extension, Quantum-DP (QDP), introduces quantum
noise and leverages quantum computation to offer verifiable privacy guarantees, even with current NISQ
devices. Beyond privacy, DP supports model fairness, reduces overfitting, and improves stability,
reinforcing its role as a foundational tool in privacy-centric and PQ resilient Al



Hardware-Based Security for Al: Trusted Execution Environments (TEEs) offer hardware-based security
for Al by enabling confidential computation within isolated, tamper-resistant memory regions, protecting
both data and model operations in untrusted centralized or distributed settings. Compared to cryptographic
methods like HE, FE, and MPC, TEEs reduce computational overhead while providing stronger security
guarantees. During training, TEEs ensure data and model confidentiality by isolating computation, enabling
secure collaboration in sensitive domains such as pharmaceuticals or autonomous vehicles without
exposing proprietary information. In deployment, TEEs preserve model privacy and prevent theft while
delivering inference results securely, applicable in sectors like healthcare and finance. Although TEEs
themselves are not inherently PQ secure, combining them with NIST-standardized PQC schemes during Al
training and inference enables PQ security guarantees [12], making TEEs a practical and scalable solution
for secure Al in the PQ era.

A Verifiable Approach Towards Al Integrity: Ensuring Al integrity is vital in outsourced or
collaborative environments where malicious behavior by users or model owners can compromise outcomes,
especially in sensitive domains like healthcare and finance. Verifiability is essential to guarantee correct
model training and inference, prevent data poisoning, and ensure regulatory compliance. Zero-Knowledge
Proofs (ZKPs) offer a compelling solution by enabling privacy-preserving verification of computation
correctness and output legitimacy [8]. While traditionally built on ECC for efficiency, PQ-secure ZKPs
based on symmetric, lattice, or multivariate cryptography extend this assurance into the PQ era. However,
practical challenges, such as large proof sizes, high computational costs, and limited scalability, must be
addressed for widespread deployment in Al systems.

Takeaways and Future Directions

As Al adoption accelerates across sectors such as healthcare and finance, driven by AlaaS and increasing
data complexity, ensuring privacy and PQ security in outsourced training and inference has become
increasingly essential. Quantum computing introduces new threats, requiring the evolution of PETs to
remain effective. While a unified solution for securing the full Al pipeline is appealing, it often proves
impractical due to computational overhead. For instance, HE is best suited for inference, and ZKPs struggle
with floating-point operations due to their integer-based structure and high storage demands. Instead,
selecting and applying the appropriate technique at each stage is crucial. Hybrid designs (e.g., MPC+FL or
HE+FL) offer promising trade-offs, enabling secure, efficient Al workflows by combining the strengths of
multiple PETs. These strategies enable flexibility and scalability while meeting diverse security and
performance requirements. A detailed breakdown of these takeaways and future directions is provided in
the Learning Objective section.

Al Systems with PQ-security and Privacy Guarantee: The growing adoption of Al across industries
such as finance and healthcare, fueled by AlaaS, coupled with the increasing volume of data and the
complexity of Al models, has driven a shift toward outsourced computation for model training and
inference. In these outsourced models, ensuring the privacy and security of both our data and users' data is



crucial. Furthermore, the rise of quantum computing presents new security challenges, prompting us to
adapt and strengthen our PETs to withstand its increased computational power.

Not One Approach Fits All: Choosing the Best for Each Stage in Securing Al Pipelines: Using a single
approach to secure the entire Al pipeline, from training to inference, may seem ideal in theory, but the
computational overhead often hinders practical adoption for meeting privacy and PQ-security needs. For
example, HE is more suited for inference tasks due to its high computational costs, while floating-point
models face difficulties with ZKPs, which typically work over integers, resulting in significant proof
generation overhead, including the need for large storage. Therefore, it’s essential to carefully choose and
apply each security tool at the right stage of the pipeline, considering its overhead and effectiveness for
industry requirements.

Hybrid Approaches for Optimizing Security and Performance: Hybrid approaches, such as MPC+FL
or HE+FL, have proven effective in optimizing both security and performance, often outperforming single-
approach systems like HE-only. For example, HE, while not ideal for the entire training cycle, can be
combined with FL for secure execution. FL ensures data privacy by storing data locally, while HE facilitates
secure central aggregation of model updates, enhancing both privacy and efficiency. In cases where
centralized computation is a vulnerability, MPC can be used to aggregate FL. model updates securely.
Overall, hybrid PETs offer the flexibility to balance security and performance for specific application needs.

Final Notes: PQ-security and privacy are two critical requirements for building trustworthy Al systems.
As these requirements become increasingly complex with the evolution of technology, it becomes essential
to adopt strategies that balance security, performance, and practicality. This ensures that Al systems can be
deployed safely and efficiently in real-world applications. Careful planning, thorough evaluation, and
gradual implementation are vital to addressing these challenges, enabling a smooth transition toward more
secure and reliable Al systems.
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