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Abstract 

The rapid integration of Artificial Intelligence (AI) across sectors such as healthcare and finance has 

amplified concerns around privacy, integrity, and long-term security, particularly in outsourced AI-as-a-

Service (AIaaS) environments. As quantum computing threatens classical cryptographic protections, 

ensuring Post-Quantum (PQ)-Secure Trustworthy AI has become imperative. This study explores a holistic 

framework for securing AI systems across training and deployment phases by leveraging PQ-resilient 

cryptographic and privacy-enhancing technologies (PETs), including Homomorphic Encryption (HE), 

Functional Encryption (FE), Multi-Party Computation (MPC), Differential Privacy (DP), Trusted 

Execution Environments (TEEs), and Zero-Knowledge Proofs (ZKPs). Each technique offers 

complementary strengths, ranging from secure computation and privacy-preserving inference to verifiable 

model integrity, yet varies in practicality, scalability, and PQ-readiness. We evaluate their utility, 

integration challenges, and trade-offs, advocating for hybrid designs (e.g., FL+MPC, HE+FL) to optimize 

security and performance. The study concludes that building PQ-secure, privacy-centric AI requires 

strategic selection and deployment of tailored tools across the AI pipeline to balance robustness with real-

world feasibility. 
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Introduction 

Artificial Intelligence (AI) and Machine Learning (ML) enable machines to perform tasks autonomously, 

often surpassing human efficiency. This capability has driven their adoption across critical sectors such as 

healthcare, finance, and transportation. With the rise of AI-as-a-Service (AIaaS) platforms like AWS and 

tools like ChatGPT, AI has become widely accessible, particularly for startups and small enterprises. 

However, the rapid deployment of AI also introduces serious concerns around privacy, integrity, and long-

term security. These risks underscore the need for Trustworthy AI, systems that remain secure, reliable, 

and verifiable even in adversarial settings [1]. This is particularly vital in high-stakes domains like 

healthcare, where AI applications like Radiomics support tasks like tumor detection from medical imaging. 

In such contexts, breaches in data confidentiality or inference integrity can be life-threatening. Moreover, 

outsourcing AI services to third-party clouds exposes training datasets and models to additional 

vulnerabilities, necessitating the adoption of Privacy-Enhancing Technologies (PETs) throughout the AI 
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lifecycle. Trustworthy AI hinges on two pillars: (1) Training Security, which ensures model integrity, 

protects user data (e.g., medical records, financial data), and defends against model theft or poisoning; and 

(2) Deployment Security, which safeguards against adversarial queries, model inversion, and extraction 

attacks that can leak or replicate sensitive models [4,7]. 

Post-Quantum Security for Trustworthy AI 

The advent of quantum computing threatens to break classical cryptographic schemes, endangering the 

long-term confidentiality and robustness of AI systems [2]. For instance, ECC-based encryption used in 

AI-driven healthcare can be broken, risking patient privacy and diagnostic reliability. To mitigate these 

threats, a global transition to post-quantum (PQ) cryptographic solutions is underway, led by efforts such 

as the NIST standardization initiative [5]. However, integrating PQ security into AI remains an open 

challenge, which this study aims to address. 

We focus on the concept of PQ-Secure Trustworthy AI, a framework for securing AI across cloud, 

distributed, and AIaaS settings where long-term integrity and confidentiality are paramount. Our study 

investigates PQ-secure techniques spanning algorithmic, statistical, and hardware-based domains, 

analyzing their applicability to both AI training and deployment. We identify critical gaps in current 

practices, examine integration and performance trade-offs, and outline directions for advancing PQ-resilient 

AI infrastructures. A qualitative comparison of these methods is also provided to guide future research and 

development toward scalable, secure, and verifiable AI systems. 

 
Figure 1. A high-level taxonomy of PQ-secure techniques for Trustworthy AI 



PQ-Secure AI Training & Deployment 

Algorithmic Approaches for AI Security: One set of approaches to secure AI relies on encryption-based 

techniques with provable security, notably Homomorphic Encryption (HE) and Functional Encryption 

(FE). Homomorphic Encryption, and specifically Fully Homomorphic Encryption (FHE), enables 

computations on encrypted data without the need for decryption, ensuring end-to-end confidentiality of 

both user data and models. While FHE-based training remains computationally intensive and less accurate, 

it is widely used for privacy-preserving outsourcing and secure aggregation, especially in federated learning 

scenarios. FHE is most beneficial during the deployment phase, particularly for AIaaS and cloud 

environments, offering robust protection in untrusted settings [10]. Most practical FHE schemes are built 

on lattice-based problems, which provide PQ security. Continuous improvements, such as batching, 

parallelization, and hardware acceleration, are enhancing FHE's practicality. In addition to HE, FE [6] 

allows for the decryption of specific function outputs, enabling selective data disclosure in settings such as 

cloud-based healthcare. While FE ensures privacy through access control, it operates under an honest-but-

curious model and may risk leakage of information through plaintext outputs. Additionally, FE schemes 

face PQ-related efficiency trade-offs, limiting their scalability for large datasets. 

Distributed Trust: Collaborative Security in AI: Distributed trust in AI security is achieved through 

collaborative architectures like Federated Learning (FL) and cryptographic techniques such as Multi-Party 

Computation (MPC) [11]. FL enables decentralized model training by allowing participants to retain their 

raw data locally, enhancing privacy, fault tolerance, and regulatory compliance (e.g., HIPAA). While FL 

relies on centralized aggregation, PQ security can be achieved by integrating secure aggregation methods 

such as HE, MPC, TEE, or DP. MPC complements FL by enabling multiple parties to jointly compute 

functions over their private data without revealing it, using primitives like HE, garbled circuits, oblivious 

transfer, and secret sharing. During training, MPC supports secure aggregation across institutions and 

outsourcing in untrusted environments. In deployment, MPC enables privacy-preserving inference without 

trusted intermediaries, safeguarding sensitive queries across sectors like banking and healthcare. PQ-secure 

MPC schemes, particularly those utilizing NIST-standardized primitives and TEE-based secure function 

evaluations, provide scalable and resilient security frameworks suitable for collaborative AI in the PQ era. 

 

Statistical Approaches for Privacy-Centric AI: Differential Privacy (DP) is a statistical technique that 

protects individual data privacy by introducing calibrated noise, making it difficult to distinguish between 

similar datasets. Though not based on cryptographic hardness assumptions, DP is inherently resistant to 

quantum attacks and is often combined with PQ-secure methods like HE, FE, and MPC to enhance system-

level privacy. In AI training, DP is applied either centrally, by adding noise to objective functions or 

aggregated updates, or locally, where users inject noise directly into their data or labels to prevent leakage 

[9]. During deployment, DP secures inference results and user queries in real-time systems (e.g., 

recommendation engines, fraud detection), making it a practical solution for companies aiming to protect 

user data and resist inference attacks. An emerging extension, Quantum-DP (QDP), introduces quantum 

noise and leverages quantum computation to offer verifiable privacy guarantees, even with current NISQ 

devices. Beyond privacy, DP supports model fairness, reduces overfitting, and improves stability, 

reinforcing its role as a foundational tool in privacy-centric and PQ resilient AI. 

 



Hardware-Based Security for AI: Trusted Execution Environments (TEEs) offer hardware-based security 

for AI by enabling confidential computation within isolated, tamper-resistant memory regions, protecting 

both data and model operations in untrusted centralized or distributed settings. Compared to cryptographic 

methods like HE, FE, and MPC, TEEs reduce computational overhead while providing stronger security 

guarantees. During training, TEEs ensure data and model confidentiality by isolating computation, enabling 

secure collaboration in sensitive domains such as pharmaceuticals or autonomous vehicles without 

exposing proprietary information. In deployment, TEEs preserve model privacy and prevent theft while 

delivering inference results securely, applicable in sectors like healthcare and finance. Although TEEs 

themselves are not inherently PQ secure, combining them with NIST-standardized PQC schemes during AI 

training and inference enables PQ security guarantees [12], making TEEs a practical and scalable solution 

for secure AI in the PQ era. 

 

A Verifiable Approach Towards AI Integrity: Ensuring AI integrity is vital in outsourced or 

collaborative environments where malicious behavior by users or model owners can compromise outcomes, 

especially in sensitive domains like healthcare and finance. Verifiability is essential to guarantee correct 

model training and inference, prevent data poisoning, and ensure regulatory compliance. Zero-Knowledge 

Proofs (ZKPs) offer a compelling solution by enabling privacy-preserving verification of computation 

correctness and output legitimacy [8]. While traditionally built on ECC for efficiency, PQ-secure ZKPs 

based on symmetric, lattice, or multivariate cryptography extend this assurance into the PQ era. However, 

practical challenges, such as large proof sizes, high computational costs, and limited scalability, must be 

addressed for widespread deployment in AI systems. 

 

 

Takeaways and Future Directions 

As AI adoption accelerates across sectors such as healthcare and finance, driven by AIaaS and increasing 

data complexity, ensuring privacy and PQ security in outsourced training and inference has become 

increasingly essential. Quantum computing introduces new threats, requiring the evolution of PETs to 

remain effective. While a unified solution for securing the full AI pipeline is appealing, it often proves 

impractical due to computational overhead. For instance, HE is best suited for inference, and ZKPs struggle 

with floating-point operations due to their integer-based structure and high storage demands. Instead, 

selecting and applying the appropriate technique at each stage is crucial. Hybrid designs (e.g., MPC+FL or 

HE+FL) offer promising trade-offs, enabling secure, efficient AI workflows by combining the strengths of 

multiple PETs. These strategies enable flexibility and scalability while meeting diverse security and 

performance requirements. A detailed breakdown of these takeaways and future directions is provided in 

the Learning Objective section. 

AI Systems with PQ-security and Privacy Guarantee: The growing adoption of AI across industries 

such as finance and healthcare, fueled by AIaaS, coupled with the increasing volume of data and the 

complexity of AI models, has driven a shift toward outsourced computation for model training and 

inference. In these outsourced models, ensuring the privacy and security of both our data and users' data is 



crucial. Furthermore, the rise of quantum computing presents new security challenges, prompting us to 

adapt and strengthen our PETs to withstand its increased computational power.  

Not One Approach Fits All: Choosing the Best for Each Stage in Securing AI Pipelines: Using a single 

approach to secure the entire AI pipeline, from training to inference, may seem ideal in theory, but the 

computational overhead often hinders practical adoption for meeting privacy and PQ-security needs. For 

example, HE is more suited for inference tasks due to its high computational costs, while floating-point 

models face difficulties with ZKPs, which typically work over integers, resulting in significant proof 

generation overhead, including the need for large storage. Therefore, it’s essential to carefully choose and 

apply each security tool at the right stage of the pipeline, considering its overhead and effectiveness for 

industry requirements. 

Hybrid Approaches for Optimizing Security and Performance: Hybrid approaches, such as MPC+FL 

or HE+FL, have proven effective in optimizing both security and performance, often outperforming single-

approach systems like HE-only. For example, HE, while not ideal for the entire training cycle, can be 

combined with FL for secure execution. FL ensures data privacy by storing data locally, while HE facilitates 

secure central aggregation of model updates, enhancing both privacy and efficiency. In cases where 

centralized computation is a vulnerability, MPC can be used to aggregate FL model updates securely. 

Overall, hybrid PETs offer the flexibility to balance security and performance for specific application needs. 

Final Notes: PQ-security and privacy are two critical requirements for building trustworthy AI systems. 

As these requirements become increasingly complex with the evolution of technology, it becomes essential 

to adopt strategies that balance security, performance, and practicality. This ensures that AI systems can be 

deployed safely and efficiently in real-world applications. Careful planning, thorough evaluation, and 

gradual implementation are vital to addressing these challenges, enabling a smooth transition toward more 

secure and reliable AI systems. 
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